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CLOMP v1.5 

Summary Version 

1.5 

Purpose of Benchmark 

CLOMP is the C version of the Livermore OpenMP benchmark developed to measure OpenMP 

overheads and other performance impacts due to threading.    For simplicity, it does not use MPI 

by default but it is expected to be run on the resources a threaded MPI task would use (e.g., a 

portion of a shared memory compute node).   Compiling with -DWITH_MPI  allows packing 

one or more nodes with CLOMP tasks and having CLOMP report OpenMP performance for the 

slowest MPI task.     On current systems, the strong scaling performance results for 4, 8, or 16 

threads are of the most interest.   Suggested weak scaling inputs are provided for evaluating 

future systems.  Since MPI is often used to place at least one MPI task per coherence or NUMA 

domain, it is recommended to focus OpenMP runtime measurements on a subset of node 

hardware where it is most possible to have low OpenMP overheads (e.g., within one coherence 

domain or NUMA domain). 

 

Characteristics of Benchmark  

 

CLOMP’s target input approximates a typical scientific application inner loop workload under 

strong scaling conditions (that is, not a lot of work available to hide OpenMP overheads).   The 

overall speedup and implied overhead of several OpenMP scheduling algorithms are then 

measured.   Most current OpenMP benchmarks tolerate OpenMP overheads several orders of 

magnitude higher than is necessary in order to get reasonable performance out of threading loops 

with just a few hundred thousand cycles of work in them.    In order to get good performance 

with CLOMP’s target input, and with many of our scientific applications, it is critical for there to 

be hardware support for threading and for the OpenMP compilers and libraries to be 

implemented to effectively use this OpenMP-accelerating hardware.   The CLOMP benchmark 

can be used to demonstrate the need for new techniques for reducing thread overheads and to 

evaluate the effectiveness of these new techniques.  The CLOMP benchmark is highly 

configurable and can also be used to evaluate the handling of other well-known threading issues 

such as NUMA memory layouts, work-load imbalance, cache effects, and memory contention 

that also can significantly affect performance.   

 

Examples of OpenMP Hardware Support  

 

Examples of OpenMP hardware support in current systems include support for atomic operations 

and locking operations in L2 cache and mechanism for efficiently distributing work to a large 

number of threads.   For today's systems that synchronize threads thru main memory, current 

best-in-class implementations of OpenMP have overheads at least ten times larger than is 

required by many of our applications for effective use of OpenMP.  For these applications to 

most effectively use OpenMP with 8 threads per MPI task, they require thread barrier latencies 

on the order of 200 processor cycles and total OpenMP “parallel for” overheads on the order of 

500 processor cycles on high performance systems.  With a single read from main memory often 
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taking several hundred cycles, it is clearly impossible to achieve these overhead goals without 

specialized hardware support.    

 

 

Parameters of Benchmark 

The CLOMP benchmark is configured entirely at run time using the command-line parameters. 

The usage information for the CLOMP Version 1.5 benchmark that is output when it is run with 

no arguments is shown in Fig. 1. The numThreads argument specifies the number of OpenMP 

threads to use when running the benchmark, where the special value ‘-1’ specifies that the 

default number of OpenMP threads (usually the number of processors or the number of threads 

set via OMP_NUM_THREADS). The allocThreads argument specifies how many threads 

will be used to allocate the memory. The typical values for allocThreads are 1 and -1. Setting 

allocThreads to 1 emulates what most of our codes do, which allocates all the memory 

touched in the main thread (which causes poor thread memory layout on systems that exhibit 

NUMA effects). Setting allocThreads to -1 (or the number of threads used) threads the 

allocation using OpenMP the same way the calculations are threaded so that the same threads 

will allocate the memory as use them, thereby improving thread memory layout. (This is not 

currently guaranteed to be true by OpenMP, but it appears to be true for some OpenMP 

implementations). Although ideally programs would allocate all the memory a thread touches in 

that same thread, in practice this is often very hard to do. Thus, we are interested in the 

performance difference caused by whether the allocations themselves were done serially or in 

parallel. 

The partsPerThread, zonesPerPart, zoneSize, and flopScale command-line 

arguments in Fig. 1 will be described more fully below as we describe the mesh and computer 

kernels of the CLOMP benchmark. The last command line argument, timeScale, is provided as 

a convenience for those running the CLOMP benchmark; it scales the run-time of the 

benchmark. A timeScale of 100 was designed to run for between 5 and 30 seconds for a serial 

run of the kernel (depends on mesh size and machine speed) that should provide reasonably 

accurate timings given the resolution of the timers used. A timeScale of 1 runs the benchmark 

very quickly to identify scaling problems and correctness but probably inaccurate timings. Using 

a timeScale of 100 is probably a reasonable, yet still short, run on most current machines but 

may have to be adjusted for machine speed. 
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Figure 1  Usage information for CLOMP v1.5 benchmark. 

 

The CLOMP benchmark creates a simple unstructured mesh (see Figures 2a, 2b, and 2c) that is 

configured via the command-line parameters partsPerThread, zonesPerPart, and 

zoneSize that were shown in Fig. 1. The mesh consists of “numThreads * 

partsPerThread” independent zone partitions where each zone partition contains 

“zonesPerPart” zones.  The zonesPerPart parameter may be a constant (e.g., 4) as shown 

in Fig. 2a, a deterministic range expression (e.g., 4-1) as shown in Fig. 2b, or a random range 

expression (e.g., 1-4R2) as shown in Fig. 2c that pseudo-randomly picks zone counts from the 

specified range (1-4) with the random seed specified (2).   The non-constant zonesPerPart 

expressions allows creating situations where OpenMP dynamic scheduling is expected (or 

desired) to outperform static scheduling.    

 

The CLOMP benchmark explicitly allocates all the zones (e.g., Zone01, Zone02, Zone 03, and 

Zone04 in Fig. 2a) in each zone partition (e.g., Part0 in Fig. 2a) in a continuous block, so that all 

the partition’s zones are immediately adjacent to each other (even though they are accessed via a 

linked list). This zone allocation strategy should allow prefetching to work well while traversing 

each partition’s zones. The amount of memory allocated for each zone is set by the zoneSize 

parameter (shown in Fig. 1), although there is a system dependent minimum size that is usually 

32 bytes. Only the first approximately 32 bytes of each zone is actually used, and the zoneSize 

CLOMP Version 1.50 (CORAL2 RFP) 

Usage: clomp numThreads allocThreads partsPerThread \ 

           zonesPerPart zoneSize flopScale timeScale 

 

New in Version 1.2: Compile with -DWITH_MPI to generate clomp_mpi 

New in Version 1.3: zonesPerPart can be range expression start-end 

                    (i.e., 700-100) 

                    zonesPerPart can be random over range by adding R[seed] 

                    (i.e., 100-300R2) 

New in Version 1.5: Args change: numParts = numThreads * partsPerThread 

 

  numThreads: Number of OpenMP threads to use (-1 for system default) 

  allocThreads: #threads when allocating data (-1 for numThreads) 

  partsPerThread: Number of independent pieces of work per thread 

  zonesPerPart: Number of zones in the first part (3 flops/zone/part) 

  zoneSize: Bytes in zone, only first ~32 used (512 nominal, >= 32 valid) 

  flopScale: Scales flops/zone to increase memory reuse (1 nominal, >=1 Valid) 

  timeScale: Scales target time per test (10-100 nominal, 1-10000 Valid) 

 

Some interesting testcases (last number controls run time): 

           Target input:    clomp 16 1 1 400 32 1 100 

   Target/NUMA friendly:    clomp 16 -1 1 400 32 1 100 

UNBALANCED Target input:    clomp 16 1 4 700-100 32 1 100 

RANDOM UNBALANCED input:    clomp 16 1 4 1-800R4 32 1 100 

    Weak Scaling Target:    clomp N -1 1 400 32 1 100 

      Weak Scaling Huge:    clomp N -1 1 6400 32 1 100 

  Strong Scaling Target:    clomp -1 -1 1024 10 32 1 100 

        Mem-bound input:    clomp N 1 1 640000 32 1 100 

Mem-bound/NUMA friendly:    clomp N -1 1 640000 32 1 100 

  MPI/OMP Hybrid Target:    (mpirun -np M) clomp_mpi 16 1 1 400 32 1 100 
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parameter is provided mainly as a way to increase the memory footprint of the mesh without 

creating more work. 

 
Figure 2a  CLOMP balanced unstructured mesh data structures for  
                  numThreads * partsPerThread = 4 and zonesPerPart=4. 

 

 
Figure 2b  CLOMP workload-sorted unbalanced unstructured mesh data structures for  
                  numThreads * partsPerThread = 4 and zonesPerPart=4-1 
                  (workload-sorted dynamic scheduling test configuration). 

Part0 

FirstZone 

PartData 

Zone01 

NextZone 

ZoneData 

 

Zone02 

NextZone 

ZoneData 

 

Zone03 

NextZone 

ZoneData 

 

Zone04 

NextZone 

ZoneData 

 

Part1 

FirstZone 

PartData 

Zone11 

NextZone 

ZoneData 

 

Zone12 

NextZone 

ZoneData 

 

Zone13 

NextZone 

ZoneData 

 

Part2 

FirstZone 

PartData 

 

Zone21 

NextZone 

ZoneData 

 

Zone22 

NextZone 

ZoneData 

 

Part3 

FirstZone 

PartData 

 

Zone31 

NextZone 

ZoneData 

 

PartPtr0 

PartPtr1 

partArray[4] 

PartPtr2 

PartPtr3 

Part0 

FirstZone 

PartData 

Zone01 

NextZone 

ZoneData 

 

Zone02 

NextZone 

ZoneData 

 

Zone03 

NextZone 

ZoneData 

 

Zone04 

NextZone 

ZoneData 

 

Part1 

FirstZone 

PartData 

Zone11 

NextZone 

ZoneData 

 

Zone12 

NextZone 

ZoneData 

 

Zone13 

NextZone 

ZoneData 

 

Zone14 

NextZone 

ZoneData 

 

Part2 

FirstZone 

PartData 

 

Zone21 

NextZone 

ZoneData 

 

Zone22 

NextZone 

ZoneData 

 

Zone23 

NextZone 

ZoneData 

 

Part3 

FirstZone 

PartData 

 

Zone31 

NextZone 

ZoneData 

 

Zone32 

NextZone 

ZoneData 

 

PartPtr0 

PartPtr1 

partArray[4] 

PartPtr2 

PartPtr3 
Zone33 

NextZone 

ZoneData 

 

Zone34 

NextZone 

ZoneData 

 

Zone24 

NextZone 

ZoneData 

 



Page 5 of 8 

 

 
Figure 2c  CLOMP unsorted randomized unbalanced unstructured mesh data structures for  
                  numThreads * partsPerThread = 4 and zonesPerPart=1-4R2 
                  (unsorted workload dynamic scheduling test configuration). 

 

No real or useful physics is done by the CLOMP benchmark, but a configurable amount of 

physics-like work is done in each zone during each “physics cycle,” and the benchmark is 

designed to produce bit-for-bit reproducible (and predictable) answers no matter how many 

threads are used to calculate the results. The CLOMP benchmark uses this property (and other 

techniques) to detect many common threading errors. The thread-parallel kernel for the CLOMP 

benchmark is shown in Fig. 3 with OpenMP directives for static scheduling. The 

calc_deposit() call in Fig. 3 represents an MPI exchange of data (although currently no MPI 

is done in the timing sections CLOMP, even with -DWITH_MPI) and must be called from a 

single-threaded region and must be called after the previous thread parallel work is done. All the 

computational work is done in the update_part(), and it is the for loop around 

update_part() that is the target for threading. 

 
Figure 3  CLOMP thread-parallel kernel with OpenMP directives and static scheduling. 

 

Although the focus of the CLOMP benchmark is the OpenMP kernel shown in Fig. 3, a 

simplified version of the compute kernel of update_part() is shown in Fig. 4 in order to 

explain the flopScale command-line parameter from Fig. 1. This update_part() kernel 

follows the linked list of zones in each zone partition and does a little bit of math on the zone’s 

value. Its purpose is to consume cycles in a configurable way that produces verifiable output, not 

to actually do anything useful. When flopScale is 1 (the desired target setting), each iteration 

of the outside zone traversal loop does (with a reasonable optimizer) two loads from the zone 

(zone->value, a double, and zone->nextZone, a pointer), does a double multiple, a double add, 
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deposit = calc_deposit (); /* Sync, non-threadable */ 

#pragma omp parallel for private (pidx) schedule(static) 

for (pidx = 0; pidx < num_parts; pidx++) 

   update_part (partArray[pidx], deposit); 
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and a double subtract, and a double store to the zone (zone->value, a double). This memory 

access to flop ratio is representative of several interesting scientific calculations and can put a 

load on the memory system, especially prefetching logic of the memory system. By setting the 

flopScale parameter to 100 and reducing the mesh size by 100, one can get an input of 

approximately the same run time that is much less affected by the memory system. Using a value 

greater than 1 for flopScale is interesting only for explaining performance anomalies in the 

benchmark run when flopScale is set to 1.  Note: The actual update_part() source code 

explicitly loop versions the zone loop in Figure 4 for flopScale == 1 to remove the scale_count 

loop overhead even for compilers than don’t support that optimization. 

 
Figure 4  The non-threadable compute kernel of update_part(). 

 

The CLOMP benchmark measures the total overhead for static, dynamic, and manual OpenMP 

“parallel for” loop scheduling and the speedup achieved when performing a “physics cycle” on 

the specified unstructured mesh. The potential “best-case” static-scheduled speedup is also 

determined in order to provide an approximate upper bound on static-scheduled threaded 

performance and in order to be able to calculate an efficiency rating for the OpenMP 

implementation. By running the CLOMP benchmark with several different mesh sizes and thread 

configurations, the performance effect of OpenMP overheads, NUMA effects, cache and 

memory bandwidth and latency effects, and prefetching effectiveness can be clearly seen. The 

amount of work each benchmark OpenMP test performs is run-time configurable and is, by 

design, independent of mesh size, so that a wide range of CLOMP benchmark runs can be done 

quickly. 

Below we suggest some run configurations for CLOMP that have shown interesting results on 

the systems tested. There are probably many other useful configurations to try. 

Mechanics of Building Benchmark 

The CLOMP benchmark consists of one C file, clomp.c, and a Makefile that contains the 

compile line for a few compilers, and two similar example run script run_clomp.bgq and run 

clomp.cts1 of 22 interesting run configurations.   These run_clomp* scripts generate 

run_clomp.summary and run_clomp.CORAL2_RFP which is summarizes the run data for the 

CORAL2 RFP.   You can either compile clomp.c directly with the desired compiler arguments to 

get good OpenMP performance or you can put the compile line in the Makefile. Running the 

Makefile with no arguments shows the compiler lines available. For example, make icc builds 

CLOMP with icc and mpicc (assumed to be in your path) (on Linux) generating clomp, 

clomp_hwloc and clomp_mpi.      If you are reporting results to us, please specify the compiler 

for (zone = part->firstZone; zone != NULL; zone = zone->nextZone) 

{ 

 for (scale_count = 0; scale_count < flopScale; scale_count++) 

 { 

     deposit = remaining_deposit * deposit_ratio; 

     zone->value += deposit; 

     remaining_deposit -= deposit; 

 } 

} 
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options uses to build CLOMP.   You must optimize clomp at least at the equivalent of -O3 unless 

you have a strong reason not to.   

 

You may optionally compile with the -DHWLOC option which causes clomp to bind OpenMP 

threads to cores using the hwloc library.   This binding yielded significant speedup on various 

x86 clusters tested.   You may change the straightforward binding logic to better match your 

hardware.    

 

Compiling with -DWITH_MPI enables MPI in the code.  Our hwloc implementation is not MPI 

aware and generally generated very poor results with MPI as implemented.   Our MPI launchers 

and bind helpers (e.g., mpibind) do a reasonable thread-binding by default.   If your MPI 

launcher does not, please feel free to set up the appropriate binding when running clomp_mpi 

(either externally or by enhancing clomp.c).   Since MPI is often used to place at least one MPI 

task per coherence or NUMA domain, focus on binding to a subset of node hardware where it is 

most possible to have low OpenMP overheads (e.g., within one coherence domain or NUMA 

domain). 

 

 

Setting Up the OpenMP Environment 

On the few systems we have tested so far, additional system-specific and/or compiler-specific 

environment variables need to be set in order to get good thread performance while not 

penalizing serial performance.  We found OMP_WAIT_POLICY ACTIVE was critical on BG/Q 

but slowed down serial the serial sections of CLOMP by 25% or more on some other clusters, 

making the threaded portions appear artificially ‘faster’.   Clomp v1.5 now measures this serial 

impact and essentially scales down threaded speedups by the measured serial impact.   Be sure to 

check this line of the clomp output to make sure the serial section is not being severely penalized 

(and thus the OpenMP speedup scores being penalized): 

 

OMP Serial Impact: 1.03X Slower serial ( 2.694s / 2.619s,  After OMP/Before OMP) 

 

Ideally, the serial impact would be a 1.00X slowdown (no slowdown) or close to this. 

 

Platform-specific thread settings sometimes give threads strong processor affinity, bind threads 

to separate processors, or direct the operating system to use all the available processors to run 

threads instead of just a few.  In the past, we found these settings by looking at the SPEC 

OpenMP benchmark results where all environment variables set have to be specified and/or by 

asking the vendors for suggestions. 

For example, on BGQ with the xlc compiler, these two environment variables had to be set for 

the best performance: 

setenv OMP_WAIT_POLICY ACTIVE 

setenv BG_SMP_FAST_WAKEUP YES 



On BG/Q, OMP_WAIT_POLICY set to ACTIVE did not have a negative impact on serial 

performance. 

On Linux with recent icc compiler versions, setting OMP_WAIT_POLICY to PASSIVE was very 

important for good serial, as well as, OpenMP performance: 

setenv OMP_WAIT_POLICY PASSIVE 

Setting OMP_WAIT_POLICY to ACTIVE did slightly improve OpenMP runtimes but also 

significantly slowed the serial sections.   With CLOMP v1.5 serial impact adjustment, this yield 

approximately the same net speedups.    You will need to check your environment for the proper 

setting of OMP_WAIT_POLICY. 

For both BGQ/xlc and Linux/icc, there were other thread environment variables available that we 

didn’t explore with CLOMP v1.5.   With some settings, OMP_NUM_THREADS had to be set to 

the number of threads used in order to get good performance (OMP_NUM_THREADS was used 

by the thread binding system) so we set OMP_NUM_THREADS in the run_clomp* scripts. 

If you are reporting benchmark results to us, please describe what environment variables were 

set and why. 

Mechanics of Running Benchmark 

The CLOMP benchmark should be run on a dedicated (idle) node with the appropriate thread 

performance environment variables set (described above). All the runs should be done on the 

same machine around the same time (if possible) because we have found memory layout to 

sometimes be different on different nodes of the same cluster. The benchmark can be run directly 

(as described in Fig. 1), but when generating CORAL2 RFP results, it can be useful to modify 

the provided example script “run_clomp.bgq” or “run_clomp.cts1” to run a suite of CLOMP runs 

and automatically create comma-delimited result summary files that can be loaded into the 

CORAL2 results spreadsheet. The run_clomp.bgq script was designed to run 22 variations we 

have found most useful during our CLOMP benchmarking runs on our current machines.   The 

script comments indicate which runs are for strong scaling performance, weak scaling 

performance, measuring dynamic scheduling benefits, detecting bandwidth limitations, detecting 

NUMA bandwidth limitations, and detecting hybrid OpenMP/MPI performance issues.   The 

comma-delimited value file run_clomp.CORAL2_RFP is designed to be easily loaded into a 

spreadsheet and then pasted into the CORAL2 RFP results spreadsheet.     

Interpreting the Output 

The output of the CLOMP benchmark is fairly descriptive (pseudo code of what is being 

measured in printed in the full CLOMP output) and will not be described in detail here.  The 

most important performance result of interest is the speedup for the OpenMP static schedule case 

over the serial run for ~400 zones per thread with the number of threads equal to the number of 

processor cores/threads dedicated to a single MPI task. Ideally, that speedup should be close to 

the number of threads used but is typically much lower due to current OpenMP overheads.    
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